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ABSTRACT 

In this paper, we investigate the maintenance problem for a cold standby system with two dissimilar 

components and one repairman with two repair actions is studied. Assume that the component 1 follow α-series 

process repair and is given priority in use while component 2 obeys a minimal repair. Under these assumptions, 

using an alpha series process repair model, we consider a replacement policy N under which the system is replaced 

when the number of failures of component 1 reaches N. The purpose of this chapter is to determine an optimal 

replacement policy N* such that the average cost rate (i.e. the long-run average cost per unit time) of the system 

is minimized. The explicit expression for the average cost rate of the system is derived and the corresponding 

optimal replacement policy N* can be determined analytically or numerically. Finally, a numerical example is 

given to illustrate some theoretical results and the model applicability. 

Keywords: Alpha Series Process Renewal Reward Theorem Replacement Policy Renewal Process Long Run 

Average Cost Rate. 

1. INTRODUCTION 

In maintenance problems, the standby technique is often adopted to improve the system reliability, 

availability and reduce the cost incurred due to system failure. In the beginning, Lotka introduced a repair–

replacement model which is extensively used to study a one-component repairable system with one repairman. 

Moreover, it is usually assumed that the system after repair is ‘‘as good as new”. The model under this assumption 

is called as a perfect repair model. However, this assumption is not always true. In practice, most repairable 

systems are deteriorative because of the ageing effect and the accumulative wear. Barlow and Hunter  presented 

a minimal repair model in which a system after repair has the same failure rate and the same effective age as at 

the time of failure. Brown and Proschan, combined the perfect repair and the minimal repair, which is proposed 

as an imperfect repair model. In this model they assumed that the repair will be perfect with probability ‘p’ or 

minimal with probability ‘1-p’. Much Research works on the minimal repair model and the imperfect repair 

models were studied.           However, for a deteriorating simple system, it is more reasonable to assume that the 

successive working times of the system after repair will become shorter and shorter, while the consecutive repair 

times of the system after failure will become longer and longer. Ultimately, it neither works any longer nor repairs 

any more.  

          For such a stochastic phenomenon, Lam introduced a geometric process repair model by assuming that the 

system after repair is not “as good as new” and the successive working times are stochastically decreasing while, 

the successive repair times are stochastically increasing in the long run..Under this model, he studied two kinds 
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of replacement policy for simple repairable systems, one based on the working age T of the systems and the other 

based on the failure number N of the system. The explicit expressions of the average cost rate under these two 

kinds of policy are respectively calculated, and the corresponding optimal replacement policies T* and N* can be 

find analytically or numerically. Under some mild conditions, he also proved that the optimal policy N* is better 

than the optimal policy T*. 

 Yuan Lin Zhang and Guan Jun Wang  analyzed a two-component cold standby repairable system with 

one repairman. It assumed that each component after repair was not ‘‘as good as new”, and obeys a geometric 

process repair. Under this assumption, he studied a replacement policy N based on the number of repairs of 

component 1. An optimal replacement policy N* can be determined by maximizing the long-run expected reward 

per unit time. 

  Yuan Lin Zhang investigated a repairable system consisting of one component and a single 

repairman (i.e. a simple repairable system) with delayed repair. It is assumed that the working time distribution, 

the repair time distribution and the delayed repair time distribution of the system are all exponential. After repair, 

the system is not “as good as new”. Under these assumptions, by using the geometrical process and the 

supplementary variable technique, they derived some important reliability indices such as the system availability, 

rate of occurrence of failures (ROCOF), reliability and mean time to first failure (MTTFF). A repair replacement 

policy N under which the system is replaced when the number of failures of the system reaches N is also studied. 

The explicit expression for the average cost rate (i.e. the long-run average cost per unit time) of the system is 

derived, and the corresponding optimal replacement policy N ∗ can be found analytically or numerically. Finally, 

a numerical example for policy N is given. 

Similarly, in order to improve the reliability, raise the availability or reduce the cost of a system, the 

techniques for priority in use or repair were also used. For example, in the operating room of a hospital, an 

operation must be discontinued if only the power source is cut (i.e. the power station fails).Usually, there is a 

standby generator (e.g. a storage battery) which can provide electric power when the main power station fails. 

Thus, the power station (regarded as the main component, written as component 1) and the storage battery (as the 

cold standby component, written as component 2) form a repairable electricity-supply system. Obviously, it is 

reasonable to assume that the power station has use priority due to the operating cost of the power station is 

cheaper than the storage battery and the electricity-supply systems in a hospital are the some similar examples.  

 Nakagawa assumed that both working time and repair time of the priority component follow general 

distributions while both working time and repair time of the non- priority component follow exponential 

distributions, and the repairs are perfect. Under these assumptions, By using the Markov renewal theory, they 

developed some interesting reliability indices for the system. Brown et.al studied some important properties of 

monotone processes and proved that alpha series processes is more appropriate to model the up times and proved 

that the second ordered moment does not exist for uptimes. 

 Further, Guan Jun Wang and Yuan Lin Zhang studied a two component dissimilar-component cold 

standby system with different repair actions under the assumptions that the component 1 has priority in use and 

the successive working times component 1 form a decreasing geometric process while, the consecutive repair 

time forms a general repair process and component 2 obeys a minimal repair. Under these assumptions, using 

geometric process repair model, they consider a replacement policy N under which the system is replaced when 
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the number of failures of component 1 reaches N. An optimal replacement policy N* is determined such that the 

average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit expression 

for the average cost rate of the system is derived and the corresponding optimal replacement policy N* can be 

determined analytically or numerically. Finally, a numerical example is given to illustrate some theoretical results 

and the model applicability. 

 In this chapter, the α-series process repair model for a two-dissimilar component cold stand by repairable 

system with one repairman is studied by assuming that each component after repair is not ‘‘as good as new” and 

follows a α-series process repair, and component 1 has use priority and component2 obeys minimal repair. A 

repair–replacement policy N based on the number of failures of component 1 under which the system is replaced 

when the failure number of component 1 reaches N is studied .The aim is to determine an optimal replacement 

policy N* such that the average cost rate of the system is minimized and derived an explicit expression for the 

average cost rate of the system. Finally, a numerical example is given to illustrate some theoretical results included 

the uniqueness of the optimal replacement policy N*.  

2. The Model 

 To study the maintenance problem for a two-dissimilar-component cold stand by 

repairable system with different repair actions, the following assumptions are imposed. 

Assumption1: At the beginning, the two components are both new and component1 is in a  

working state while component 2 is in a cold standby state. 

Assumption2: Assume that the component 1 after repair is not ‘‘as good as new” and follow a α-

series process repair. When both components are good, component1 has use priori ty. 

Assumption3: The time interval between the completion of the (n-1)th repair and the completion 

of the nth repair of the component 1 called nth cycle (i.e., the nth repair cycle) of component.  Note 

that a component either begins to work or enters a cold stand by state of the next cycle when its 

repair is completed. Because component1 has use priority, there pair time of component2 may be 

zero in some cycles. 

Assumption4: When component 2 fails, a minimal repair is performed that returns the 

component to the function state just before failure. 

Assumption5: Assume that the working time of the component 2 having the distribution 

function H(Z) with failure r(t).The repair time of component 2 is negligible. 

Assumption6: Let nX  and nY  be respectively, the working time and the repair time of 

component ‘1’ in the nth cycle. Then the distribution functions of nX and
nY are respectively given by 

)(xFn
and )(yGn

 .Where 

.0,0,0,)()(),()(  
inn ayxwhereykGyGxkFxF  

Assumption7: A sequence {
nX  ,n=1,2,....}and a sequence {

nY ,n=1,2,....}and the lifeZ are mutually 

independent . 
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Assumption8: There placement policy N based on the number of failures of component1 is used. 

The system is replaced by a new and identical one at the Nth failure of component1,and there 

placement time is negligible. 

Assumption9: There pair cost rate of component is 2,1, iCi while the working reward rate of two 

components is same Cw. And there placement cost of the system is C. 

3. Average Cost Rate under Policy N 

 According to the assumptions of the model ,the two components appear alternately in the 

system. When the failure number of component1 reaches N, component2 is in the cold standby 

state of the Nth cycle as the repair time of component 2 is negligible. Naturally, a reasonable 

replacement policy N should be that if component2 is in the working state, it was not works until 

failure in the Nth cycle as component 1 has use priority. Thus, the renewal point under the policy 

N is efficiently established. 

 Let s1 be the first replacement time of the system, and sn (n>2) be the time between the (n-

1)th replacement and the nth replacement of the system under policy N. Thus, {s1,s2,. ..} forms a 

renewal process, and the inter arrival time between two consecutive replacements is called a 

renewal cycle. 

 Let C(N) be the average cost rate of the system under policy N. According to renewal reward 

theorem, then 

              
cyclerenewalainlengthectedThe

cyclerenewalainincurredtectedThe
NC

exp

cosexp
)( 

   

(2.1) 

Because component 1 has use priority, component 1 only exist the working state. Therefore based on the renewal 

point under policy N we have the following length of renewal cycle. Let W(N) and R(N) be the total working 

time and total repair time of the system during a renewal cycle. That is  

          )()( NRNWL 
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Since Y1, Y2,......YN-1 are independent and identically distributed, 

Let 121 ......)(  NYYYNR is follows )()1( tG N
. 

Where )()1( tG N
 is the (N-1) fold convolution of the distribution G. 

Denote N(t), the failure number of component 2, in the time interval (0,t] when it is operating in (0,t] with the 

minimal repair. Then {N (t), t>=0} will constitute a non-homogenous Poisson process with failure intensity 

r(s).Thus, the mean of N(t) is 


t

dssrNRNE
0

)()](([                  (2.3) 
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Because the total working time of component 2 in a renewal cycle is 121 ......)(  NYYYNR , the failure 

number of component 2 in a renewal cycle is N(R(N)), and its expected value is 





0

)1( )()]([)](([ tGdtNENRNE n               (2.4) 
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Where )(1)( )1()1(

sGsG NN 

 is the survival function of 121 ......)(  NYYYNR . 

Let C(N) be the long-run average cost rate (ACR) of the system under policy N. According to the renewal reward 

theorem [see Ross(1970)], 
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Now, we evaluate the expected value of Xn and Yn and N(R(N) as follows: 

According to the assumption of the model, we have 

 If {Xn, n=1,2,....} is distributed according to an exponential failure law with distribution function Fn(n
αx), 

then we have 

   




0

)()( xnFdxXE n

         (2.8) 
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        (2.9) 

If {Yn, n=1,2,....} is distributed according to an exponential failure law with distribution function Fn(n
βx), then we 

have 

   


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According to assumption (4) , the distribution function of Z is given by 

  )/exp(1)( zzH   .       (2.12) 

     Then failure intensity is given by 

      

1
r   .            (2.13) 
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If the life time of component 2 is exponentially distributed with constant rate r, then the failure number 

}0),({ ttN  of component 2 form a homogeneous Poisson process with intensity r. Thus the expected failure 

number of component 2 in a renewal cycle is given by 

From equation (3.6) we have 
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n
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Since, Y1,Y2,......YN-1 are independent and identically exponentially distributed then the survival function 
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From equation (3.14) and (3.15), we have 
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From equation (3.13), we have 
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From equations (2.9),(2.11) and (2.17) ,the equation (2.1) becomes 
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4. Numerical Results and Conclusions 

 For the hypothetical values Cr=40, C=2500 , Cw=100, p=0.75, α=0.95, β=-0.95, 
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 λ =20, µ=30 it could be computed the long-run average cost per unit of time is computed as follows: 

Table- 4.1: The long-run average cost per unit of time values against N 

N C(N) N C(N) 

1 84 14 30.78261983 

2 73.58611416 15 31.09462423 

3 45.96808144 16 31.35253205 

4 31.71588738 17 31.56544718 

5 26.93002094 18 31.7410108 

6 26.01872761 19 31.88559439 

7 26.42633907 20 32.00449838 

8 27.20515676 21 32.10213054 

9 28.02162693 22 32.18215759 

10 28.76572121 23 32.24763108 

11 29.40895758 24 32.30109101 

12 29.95217047 25 32.34465099 

13 30.40583785   

 

 

 
 

Table 4.2: The long-run average cost per unit of time values against N 

 

For the hypothetical values Cr=40, C=2500,Cw=100, p=0.7, α=0.95, β=-0.99,λ =20 ,µ=30 it could be 

computed the long-run average cost per unit of time is computed as follows: 
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N C(N) N C(N) 

1 84 14 31.21485235 

2 73.58611416 15 31.52688167 

3 45.96318943 16 31.78443134 

4 31.75998622 17 31.99683456 

5 27.08444256 18 32.17186243 

6 26.27475889 19 32.31595504 

7 26.75367527 20 32.43444417 

8 27.57765535 21 32.53174693 

9 28.42137252 22 32.61152703 

10 29.18134653 23 32.67682672 

11 29.83348129 24 32.73017408 

12 30.38138944 25 32.77367042 

13 30.83727305   

 

 

Table: 4.3 The long-run average cost per unit of time values against N 

For the hypothetical values Cr=40 , C=2500,Cw=100, p=0.75, α=0.95, β=-1.25,λ =20 ,µ=30 it could be computed 

the long-run average cost per unit of time is computed as follows: 

N C(N) N C(N) 

1 84.00001243 14 33.71944128 

2 73.58611416 15 34.01447954 

3 45.92809734 16 34.25569396 

4 32.0661705 17 34.45329227 

5 28.13082822 18 34.61540516 

6 27.96156218 19 34.74853682 
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7 28.85414766 20 34.85792052 

8 29.91371556 21 34.94779277 

9 30.87998092 22 35.02160322 

10 31.69608256 23 35.0821752 

11 32.36694457 24 35.13182933 

12 32.9134193 25 35.17247931 

13 33.35775454   

 

 

5. Conclusions 

i. From the table 4.1 and graph 4.1, it is examined that the long-run average cost per unit time C(6) 

=26.01872761 is minimum for the given β= -0.95, α=0.95. Thus, we should replace the system at the time 

of 6th failure. 

ii. From the table 4.2 and graph 4.2, it is observed that the long-run average cost per unit time 

C(6)=26.27475889 is minimum for the given β= -0.99, α=0.95. We should replace the system at the time 

of 6th failure. Thus, from above conclusions in (i) and (ii), it can be concluded that the long-run average 

cost per unit time increases with β.  

iii. From the table 4.3 and graph 4.3, it is observed that the long-run average cost per unit time 

C(6)=27.96156218is minimum for the given β= -1.25, α=0.95. We should replace the system at the time 

of 6th failure.  

iv. From the above conclusions (i) to (iii) , it is examined that the parameter ‘β’ is positively related with N, 

while negatively related with cost function. Similar conclusions may be drawn as ‘ ’ decreases an 

increase in the number of failure, which coincides with the practical analogy and helps  the decision maker 

for making an appropriate decision. 
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